Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sustainability ; 12(24)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36938128

RESUMO

To better understand the origin of microplastics in municipal drinking water, we evaluated 50 mL water samples from different stages of the City of Rochester's drinking water production and transport route, from Hemlock Lake to the University of Rochester. We directly filtered samples using silicon nitride nanomembrane filters with precisely patterned slit-shaped pores, capturing many of the smallest particulates (<20 µm) that could be absorbed by the human body. We employed machine learning algorithms to quantify the shapes and quantity of debris at different stages of the water transport process, while automatically segregating out fibrous structures from particulate. Particulate concentrations ranged from 13 to 720 particles/mL at different stages of the water transport process and fibrous pollution ranged from 0.4 to 8.3 fibers/mL. A subset of the debris (0.2-8.6%) stained positively with Nile red dye which identifies them as hydrophobic polymers. Further spectroscopic analysis also indicated the presence of many non-plastic particulates, including rust, silicates, and calcium scale. While water leaving the Hemlock Lake facility is mostly devoid of debris, transport through many miles of piping results in the entrainment of a significant amount of debris, including plastics, although in-route reservoirs and end-stage filtration serve to reduce these concentrations.

2.
Small ; 15(6): e1804111, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30632319

RESUMO

Selective cellular transmigration across the microvascular endothelium regulates innate and adaptive immune responses, stem cell localization, and cancer cell metastasis. Integration of traditional microporous membranes into microfluidic vascular models permits the rapid assay of transmigration events but suffers from poor reproduction of the cell permeable basement membrane. Current microporous membranes in these systems have large nonporous regions between micropores that inhibit cell communication and nutrient exchange on the basolateral surface reducing their physiological relevance. Here, the use of 100 nm thick continuously nanoporous silicon nitride membranes as a base substrate for lithographic fabrication of 3 µm pores is presented, resulting in a highly porous (≈30%), dual-scale nano- and microporous membrane for use in an improved vascular transmigration model. Ultrathin membranes are patterned using a precision laser writer for cost-effective, rapid micropore design iterations. The optically transparent dual-scale membranes enable complete observation of leukocyte egress across a variety of pore densities. A maximal density of ≈14 micropores per cell is discovered beyond which cell-substrate interactions are compromised giving rise to endothelial cell losses under flow. Addition of a subluminal extracellular matrix rescues cell adhesion, allowing for the creation of shear-primed endothelial barrier models on nearly 30% continuously porous substrates.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Membranas Artificiais , Modelos Biológicos , Nanopartículas/química , Migração Transendotelial e Transepitelial , Animais , Adesão Celular , Colágeno/metabolismo , Matriz Extracelular/química , Géis/química , Humanos , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Neutrófilos/citologia , Porosidade , Ratos
3.
Adv Mater Interfaces ; 6(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32577337

RESUMO

Nanoscale preconfinement of DNA has been shown to reduce the variation of passage times through solid-state nanopores. Preconfinement has been previously achieved by forming a femtoliter-sized cavity capped with a highly porous layer of nanoporous silicon nitride (NPN). This cavity was formed by sealing a NPN nanofilter membrane against a substrate chip using water vapor delamination. Ultimately, this method of fabrication cannot keep a consistent spacing between the filter and solid-state nanopore due to thermal fluctuations and wrinkles in the membrane, nor can it be fabricated on thousands of individual devices reliably. To overcome these issues, we present a method to fabricate the femtoliter cavity monolithically, using a selective XeF2 etch to hollow out a polysilicon spacer sandwiched between silicon nitride layers. These monolithically fabricated cavities behave identically to their counterparts formed by vapor delamination, exhibiting similar translocation passage time variation reduction and folding suppression of DNA without requiring extensive manual assembly. The ability to form nanocavity sensors with nanometer-scale precision and to reliably manufacture them at scale using batch wafer processing techniques will find numerous applications, including motion control of polymers for single-molecule detection applications, filtering of dirty samples prior to nanopore detection, and simple fabrication of single-molecule nanobioreactors.

4.
ACS Appl Nano Mater ; 2(8): 4773-4781, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32577609

RESUMO

Elucidating the kinetics of DNA passage through a solid-state nanopore is a fertile field of research, and mechanisms for controlling capture, passage, and trapping of biopolymers are likely to find numerous technological applications. Here we present a nanofiltered nanopore device, which forms an entropic cage for DNA following first passage through the nanopore, trapping the translocated DNA and permitting recapture for subsequent reanalysis and investigation of kinetics of passage under confinement. We characterize the trapping properties of this nanodevice by driving individual DNA polymers into the nanoscale gap separating the nanofilter and the pore, forming an entropic cage similar to a "two pores in series" device, leaving polymers to diffuse in the cage for various time lengths, and attempting to recapture the same molecule. We show that the cage results in effectively permanent trapping when the radius of gyration of the target polymer is significantly larger than the radii of the pores in the nanofilter. We also compare translocation dynamics as a function of translocation direction in order to study the effects of confinement on DNA just prior to translocation, providing further insight into the nanopore translocation process. This nanofiltered nanopore device realizes simple fabrication of a femtoliter nanoreactor in which to study fundamental biophysics and biomolecular reactions on the single-molecule level. The device provides an electrically-permeable single-molecule trap with a higher entropic barrier to escape than previous attempts to fabricate similar structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...